OpenPlant Blog — OpenPlant

[Closes 30 May 2018] Co-ordinator for Synthetic Biology Centre

We're looking to hire a Cambridge-based coordinator for the OpenPlant SynBio Research Centre and the Cambridge SynBio Strategic Research Initiative. Application deadline is 30 May 2018.

Full details of the post can be found at http://www.jobs.cam.ac.uk/job/17351/


The role-holder would work 50% to support the OpenPlant Synthetic Biology Research Centre and 50% with the Synthetic Biology Strategic Research Initiative (SynBio SRI). The purpose of the role is to help develop and implement a strategy that will enable both initiatives to become known leaders in the field and sustainable in the longer term.

OpenPlant (http://openplant.org) is a consortium funded by BBSRC and EPSRC comprising 20 labs spanning the University of Cambridge, John Innes Centre and the Earlham Institute (Norwich). The work of the Research Centre is intended to promote novel research on tools and applied traits for plant synthetic biology, open sharing of foundational technologies, and responsible innovation. The role-holder will work with the OpenPlant Directors and Management Group, including the OpenPlant Project Manager based in Norwich, to co-ordinate a variety of activities within the Research Centre.

The SynBio SRI (http://synbio.cam.ac.uk) aims to catalyse interdisciplinary exchange between engineering, physics, biology and social sciences to advance Synthetic Biology at the University of Cambridge. The role-holder will work with the SRI Co-Chairs and Steering Committee to develop, plan and deliver the SRI's vision and strategy. They will facilitate efforts to promote development of open technologies, build shared resources, and provide a hub for networking and discussion.

Responsibilities will also include co-ordinating seed funding competitions such as the Biomaker Challenge and OpenPlant Fund; organising formal and informal scientific meetings and forums; developing and managing relationships with stakeholders within and external to the University; seeking small and large-scale funding for future activities. The role-holder is additionally responsible for ensuring that synthetic biology activities in Cambridge are actively communicated and promoted, and is supported by the part-time SynBio SRI Events and Communication Co-ordinator.

The successful candidate will have a PhD in a relevant field and knowledge of Synthetic Biology research, policy and practice. They will have the ability to foster relationships with and between academics at all levels in an interdisciplinary context, and build partnerships with companies, funders and policy makers. A successful track record in attracting research funding would be advantageous. Excellent organisational and communications skills are essential, together with proven problem-solving skills and initiative.

Fixed-term: The funds for this post are available until 30 September 2019 in the first instance.

Cell-free protein synthesis - try it with your favourite protein!

Quentin Dudley, a postdoc at the Earlham Institute, did a PhD in the Jewett lab (Northwestern University, Illinois) focused on the use of cell-free systems for the reconstitution of metabolic pathways and bioproduction of monoterpenes. Now he is using an OpenPlant Fund Award to establish cell-free platforms for protein synthesis in Norwich. Read more about this work below, and on www.biomaker.org

As part of this project he is recruiting participants for a workshop on cell-free protein synthesis to be held in mid-June in Norwich. It is an opportunity to try to express your favourite protein using a low-cost, high-throughput platform. Download the poster for details and contact quentin.dudley@earlham.ac.uk for details and questions.


Cell-free protein synthesis

2018-05-10 CFPS graphic png.png

Cell-free protein synthesis (CFPS) uses crude lysates of E. coli, wheat germ, and other organisms to recapitulate transcription and translation in a test tube (Carlson et al., 2012). This enables protein production at higher throughput, shorter timescales, and simpler troubleshooting compared to expression in cells. While CFPS has several pros/cons, it is particularly powerful when testing many different protein variants/mutations with an output assay that works directly in the crude cell-free reaction.

While CFPS is getting easier to implement, buying commercial kits can get expensive and troubleshooting the first time can be challenging. In response, I’m leading a project sponsored by the OpenPlant fund to establish an in-house E. coli CFPS system (~£1 / rxn) at Norwich/Cambridge and want to compare it to a commercial wheat germ kit (£12 / rxn) for expressing proteins. We are testing a range of different proteins from various plants. If you have an interesting protein you’d like to try expressing in a cell-free system, please contact quentin.dudley@earlham.ac.uk for details!)

I’ve previously worked with CFPS as a graduate student with Michael Jewett at Northwestern University. The Jewett lab is working to develop new CFPS platforms using yeast (S. cerevisiae), chloroplasts, and CHO cells. They also are improving existing E. coli-based systems to synthesize “tricky” proteins that require complex folding environments (membrane proteins, antibodies) or contain nonstandard amino acids. During my time in the lab, I used CFPS to manufacture enzyme homologs which could then be combined to prototype metabolic pathways, for example biosynthesis of monoterpenoids.

It is a very exciting time for cell-free systems. Protein yields have increased to 2 mg/mL and a commercial company (Sutro Biopharma) has reported reaction volumes at 100 L (Zawada et al., 2011). Additionally, cell-free reactions can be freeze-dried on paper and retain full activity; several groups are using this feature to develop on-demand pharmaceuticals or simple, color-changing diagnostics for diseases such as Zika virus (Pardee et al., 2016). As this cell-free technology matures, its flexibility and programmability make it an attractive opportunity for Biomaker projects and future applications will be limited only by the creativity of researchers and developers.

2018-05-01 CFPS flyer FINAL.png

REFERENCES

Carlson, E. D., Gan, R., Hodgman, C. E., & Jewett, M. C. (2012). Cell-free protein synthesis: applications come of age. Biotechnology Advances, 30(5), 1185-1194.

Zawada, J. F., Yin, G., Steiner, A. R., Yang, J., Naresh, A., Roy, S. M., ... & Murray, C. J. (2011). Microscale to manufacturing scale‐up of cell‐free cytokine production—a new approach for shortening protein production development timelines. Biotechnology and Bioengineering, 108(7), 1570-1578.

Pardee, K., Green, A. A., Takahashi, M. K., Braff, D., Lambert, G., Lee, J. W., ... & Collins, J.J. (2016). Rapid, low-cost detection of Zika virus using programmable biomolecular components. Cell, 165(5), 1255-1266.