OpenPlant Blog — OpenPlant

Marchantia polymorpha genome published with OpenPlant co-authors

Marchantia polymorpha genome published with OpenPlant co-authors

Insights into Land Plant Evolution Garnered from the Marchantia polymorpha Genome.

Bowman, J.L., Kohchi, T., Yamato, K.T., Jenkins, J., Shu, S., Ishizaki, K., Yamaoka, S., Nishihama, R., Nakamura, Y., Berger, F., Adam, C., Sugamata Aki, S., Althoff, F., Araki, T., Arteaga-Vazquez, M.A., Balasubrmanian, S., Barry, K., Bauer, D., Boehm, C.R., Briginshaw, L., Caballero-Perez, J., Catarino, B., Chen, F., Chiyoda, S., Chovatia, M., Davies, K.M., Delmans, M., Demura, T., Dierschke, T., Dolan, L., Dorantes-Acosta, A.E., Eklund, D.M., Florent, S.N., Flores-Sandoval, E., Fujiyama, A., Fukuzawa, H., Galik, B., Grimanelli, D., Grimwood, J., Grossniklaus, U.

Cell 171.2 (2017): 287-304.

https://doi.org/10.1016/j.cell.2017.09.030

Share

[Closes 2 Jan 2018] Postdoc in Synthetic Biology at Newcastle University

Newcastle University are seeking a highly motivated experimental synthetic biology researcher to join Dr Angel Goñi-Moreno’s team at the Interdisciplinary Computing and Complex BioSystems (ICOS) group and the Centre for Synthetic Biology and the Bioeconomy of Newcastle University. You will work on the project “SynBio3D: Establishing the engineering fundamentals of three-dimensional synthetic biology”.

This project seeks to integrate spatial constraints such as distances and molecular crowding into the design and construction of gene regulatory circuits. Each gene sequence and each protein may need a specific physical address in the spatial frame of a cell for optimal performance (see http://pubs.acs.org/doi/abs/10.1021/acssynbio.6b00397 ), a fundamental question to be addressed by the project. This will bring spatial resolution to synthetic biology. Single molecules and DNA components will be tracked inside living cells. This project offers a fantastic playground for a researcher in synthetic biology to conduct highly novel research.


You will have a PhD awarded, or be close to obtaining one, with a significant molecular biology, genetic engineering or related component. You will have skills in the construction and validation of synthetic genetic circuits in bacterial cells. You will have knowledge in genome editing techniques. You will have experience in using fluorescence microscopy and, ideally, the visualization of gene expression constituents in individual cells. Experience in super-resolution microscopy is not essential, but will be positively considered. You will possess strong interests in the application of single-molecule tracking to synthetic biology problems.

You will need to be able to work independently as well as part of a team. Good communication skills are essential – our team includes computer scientists, engineers, biochemists, physicists and molecular biologists. Working under the supervision of senior colleagues, you will develop and initiate new collaborations both internally and externally. You will need to write up research results as well as to present our developments in national and international conferences and meetings. You will contribute to identify potential areas of research within the project and develop leadership skills.

The post is available fixed term for 24 months with start date as soon as possible.
Interviews will take place in January 2018, exact date to be confirmed upon invitation.

More information >>

Share

[Closes 14 Dec 2017] Academies Partnership in Supporting Excellence in Cross-disciplinary research awards (APEX Awards)

In partnership with the British Academy, the Royal Academy of Engineering and the Royal Society (‘the Academies’) and with generous support from the Leverhulme Trust, the APEX award (Academies Partnership in Supporting Excellence in Cross-disciplinary research award) scheme offers established independent researchers, with a strong track record in their respective area, an exciting opportunity to pursue genuine interdisciplinary and curiosity-driven research to benefit wider society.

The objectives of this scheme are to:

  • support outstanding interdisciplinary research which is unlikely to be supported through conventional funding programmes 
  • promote collaboration across disciplines, with a particular emphasis on the boundary between science and engineering and the social sciences and humanities
  • support researchers with an outstanding track record, in developing their research in a new direction through collaboration with partners from other disciplines
  • enable outstanding researchers to focus on advancing their innovative research through seed funding

See more information and apply by 14 Dec 2017 >>

Share

[Deadline 15 Dec 2017] Faculty Openings at Northwestern Center for Synthetic Biology

The Feinberg School of Medicine at Northwestern University invites applications for a tenure-track position at the rank of Assistant Professor in the Center for Synthetic Biology

Applicants should have a PhD and postdoctoral experience in a field related to synthetic biology and should have research plans that apply synthetic biological approaches to biomedical goals. Ideal candidates should also demonstrate strong communication and leadership skills, as well as an ability to contribute actively to a rapidly growing Center.

Northwestern University has recently started the Center for Synthetic Biology as a university-wide initiative to formalize and grow Synthetic Biology as a research theme. Northwestern University offers superb start-up packages with a collegial and collaborative scientific environment that is rich with core facilities, robust cross- disciplinary graduate training programs, and diverse expertise.

Candidates should have a Ph.D. and/or a M.D. degree and postdoctoral experience. Salary is commensurate with experience and accomplishment.

Deadline: review of received applications will start December 15, 2017, and will continue until the position is filled. 

More information  >>

Apply >>

 

Share

[Closes 5 Jan 2018] Two post-doctoral fellowships in plant synthetic biology at Colorado State University

The Antunes and Medford Research groups at Colorado State University are looking for two (2) post-doctoral fellows to work on a new plant synthetic biology project to produce useful, living biomaterials

 A Ph.D. in plant molecular biology, cell biology, synthetic biology or a related field is required. Ideal applicants will have experience in molecular biology, plant cell biology and gene cloning. Experience in synthetic biology, design of synthetic genes and gene circuits, and basic mathematical modeling is desired; however, strong candidates without experience in one of these areas may be considered. Experience in moss culture and transformation is valued. Experience with transgenic plants is helpful but not essential.

Well-developed skills in written and verbal communication are desirable. The incumbents are expected to interact with other post-docs, graduate students, lab technicians and undergraduate students in a positive and professional manner.

Duties include applying a variety of molecular biology techniques, gene expression studies, synthetic gene construction, production and analysis of transgenic plants, planning experimental approaches based on research literature, and interpreting results. The successful individuals will be self-motivated and capable of independent thought and research.

More information and to apply >>

Deadline is January 05, 2018.

Share

Report highlights opportunities and risks associated with synthetic biology and bioengineering

Human genome editing, 3D-printed replacement organs and artificial photosynthesis – the field of bioengineering offers great promise for tackling the major challenges that face our society. But as a new article out today highlights, these developments provide both opportunities and risks in the short and long term.

Rapid developments in the field of synthetic biology and its associated tools and methods, including more widely available gene editing techniques, have substantially increased our capabilities for bioengineering – the application of principles and techniques from engineering to biological systems, often with the goal of addressing 'real-world' problems.

In a feature article published in the open access journal eLife, an international team of experts led by Dr Bonnie Wintle and Dr Christian R. Boehm from the Centre for the Study of Existential Risk at the University of Cambridge, capture perspectives of industry, innovators, scholars, and the security community in the UK and US on what they view as the major emerging issues in the field. The participants included several OpenPlant researchers and members of the management team.

Dr Wintle says: “The growth of the bio-based economy offers the promise of addressing global environmental and societal challenges, but as our paper shows, it can also present new kinds of challenges and risks. The sector needs to proceed with caution to ensure we can reap the benefits safely and securely.”

The report is intended as a summary and launching point for policy makers across a range of sectors to further explore those issues that may be relevant to them.

Among the issues highlighted by the report as being most relevant over the next five years are:

Artificial photosynthesis and carbon capture for producing biofuels

If technical hurdles can be overcome, such developments might contribute to the future adoption of carbon capture systems, and provide sustainable sources of commodity chemicals and fuel.  

Enhanced photosynthesis for agricultural productivity

Synthetic biology may hold the key to increasing yields on currently farmed land – and hence helping address food security – by enhancing photosynthesis and reducing pre-harvest losses, as well as reducing post-harvest and post-consumer waste.

Synthetic gene drives

Gene drives promote the inheritance of preferred genetic traits throughout a species, for example to prevent malaria-transmitting mosquitoes from breeding. However, this technology raises questions about whether it may alter ecosystems, potentially even creating niches where a new disease-carrying species or new disease organism may take hold.

Human genome editing

Genome engineering technologies such as CRISPR/Cas9 offer the possibility to improve human lifespans and health. However, their implementation poses major ethical dilemmas. It is feasible that individuals or states with the financial and technological means may elect to provide strategic advantages to future generations.

Defence agency research in biological engineering

The areas of synthetic biology in which some defence agencies invest raise the risk of ‘dual-use’. For example, one programme intends to use insects to disseminate engineered plant viruses that confer traits to the target plants they feed on, with the aim of protecting crops from potential plant pathogens – but such technologies could plausibly also be used by others to harm targets.

In the next five to ten years, the authors identified areas of interest including:

Regenerative medicine: 3D printing body parts and tissue engineering

While this technology will undoubtedly ease suffering caused by traumatic injuries and a myriad of illnesses, reversing the decay associated with age is still fraught with ethical, social and economic concerns. Healthcare systems would rapidly become overburdened by the cost of replenishing body parts of citizens as they age and could lead new socioeconomic classes, as only those who can pay for such care themselves can extend their healthy years.

Microbiome-based therapies

The human microbiome is implicated in a large number of human disorders, from Parkinson’s to colon cancer, as well as metabolic conditions such as obesity and type 2 diabetes. Synthetic biology approaches could greatly accelerate the development of more effective microbiota-based therapeutics. However, there is a risk that DNA from genetically engineered microbes may spread to other microbiota in the human microbiome or into the wider environment.

Intersection of information security and bio-automation

Advancements in automation technology combined with faster and more reliable engineering techniques have resulted in the emergence of robotic 'cloud labs' where digital information is transformed into DNA then expressed in some target organisms. This opens the possibility of new kinds of information security threats, which could include tampering with digital DNA sequences leading to the production of harmful organisms, and sabotaging vaccine and drug production through attacks on critical DNA sequence databases or equipment.

Over the longer term, issues identified include:

New makers disrupt pharmaceutical markets

Community bio-labs and entrepreneurial startups are customizing and sharing methods and tools for biological experiments and engineering. Combined with open business models and open source technologies, this could herald opportunities for manufacturing therapies tailored to regional diseases that multinational pharmaceutical companies might not find profitable. But this raises concerns around the potential disruption of existing manufacturing markets and raw material supply chains as well as fears about inadequate regulation, less rigorous product quality control and misuse.

Platform technologies to address emerging disease pandemics

Emerging infectious diseases—such as recent Ebola and Zika virus disease outbreaks—and potential biological weapons attacks require scalable, flexible diagnosis and treatment. New technologies could enable the rapid identification and development of vaccine candidates, and plant-based antibody production systems.

Shifting ownership models in biotechnology

The rise of off-patent, generic tools and the lowering of technical barriers for engineering biology has the potential to help those in low-resource settings, benefit from developing a sustainable bioeconomy based on local needs and priorities, particularly where new advances are made open for others to build on.

Dr Jenny Molloy comments: “One theme that emerged repeatedly was that of inequality of access to the technology and its benefits. The rise of open source, off-patent tools could enable widespread sharing of knowledge within the biological engineering field and increase access to benefits for those in developing countries.”

Professor Johnathan Napier from Rothamsted Research adds: “The challenges embodied in the Sustainable Development Goals will require all manner of ideas and innovations to deliver significant outcomes. In agriculture, we are on the cusp of new paradigms for how and what we grow, and where. Demonstrating the fairness and usefulness of such approaches is crucial to ensure public acceptance and also to delivering impact in a meaningful way.”

Dr Christian R. Boehm concludes: “As these technologies emerge and develop, we must ensure public trust and acceptance. People may be willing to accept some of the benefits, such as the shift in ownership away from big business and towards more open science, and the ability to address problems that disproportionately affect the developing world, such as food security and disease. But proceeding without the appropriate safety precautions and societal consensus—whatever the public health benefits—could damage the field for many years to come.”

The research was made possible by the Centre for the Study of Existential Risk, the Synthetic Biology Strategic Research Initiative (both at the University of Cambridge), and the Future of Humanity Institute (University of Oxford). It was based on a workshop co-funded by the Templeton World Charity Foundation and the European Research Council under the European Union’s Horizon 2020 research and innovation programme. 

Reference
Wintle, BC, Boehm, CR et al. A transatlantic perspective on 20 emerging issues in biological engineering. eLife; 14 Nov 2017; DOI: 10.7554/eLife.30247

Link to original piece on University News

Hear OpenPlant Coordinator Dr Jenny Molloy discuss the work on BBC Radio 4 'Inside Science' 


The text in this work is licensed under a Creative Commons Attribution 4.0 International License. For image use please see separate credits above.

Image Credit: Reaching for the Sky
Susanne Nilsson

 

Share

Open technology and democratisation of synthetic biology features on BBC Radio 4 'Inside Science'

The OpenPlant Cambridge Coordinator Dr Jenny Molloy appeared on BBC Radio 4's 'Inside Science' last week following the publication of a bioengineering horizon scanning exercise co-organised by the Centre for the Study of Existential Risk and SynBio SRI, (both University of Cambridge) and the Future of Humanity Institute (University of Oxford) in Dec 2016.

In an interview with host Adam Rutherford, Jenny discussed the potential democratised future of synthetic biology and the importance of open tools and technologies for engineering biology, such as those generated by OpenPlant and the SRI's activities such as the Biomaker Challenge.

Topics covered included the ways in which synthetic biology is getting cheaper, faster and more distributed with increasing activity within institutions and education but also in community labs like Cambridge's Biomakespace. Changing ownership models in biotechnology was highlighted in the horizon scan as a long term trend that is likely to be a major issue in the next 15 years; it can potentially lead to greater equity in access to technology for public benefit but democratisation also raises questions of responsible governance and regulation. Jenny pointed to the work of the Woodrow Wilson Centre in demonstrating that the DIY biology community are typically very proactive in self-governance and drawing up community codes of ethics and engaging with law enforcement and regulators.

You can download or take a listen to the episode online. The synthetic biology segment starts at 14 min.

More information on the biological engineering horizon scan >>

Wintle, Bonnie C., Christian R. Boehm, Catherine Rhodes, Jennifer C. Molloy, Piers Millett, Laura Adam, Rainer Breitling et al. "A transatlantic perspective on 20 emerging issues in biological engineering.eLife 6 (2017).

Share

[Closes 31 Dec 2017] Applications for the 2018 EUSynBioS Steering Committee are now open !

EUSynBioS is a community for students and postdocs in European synthetic biology. Applications to join their 2018 Steering Committee are now open until 31 December 2017, where you can help facilitate horizontal connections across the synthetic biology community and convene joint events with fellow communities around the globe.

Christian Boehm, who recently completed his PhD at the University of Cambridge is the current EUSynBioS Chair and sends this message:

"Dear EUSynBioS community,

As you know, this initiative is run entirely by dedicated students and postdocs keen to make a difference in European synthetic biology. Over the previous year, we have had a fantastic group of people on the Steering Committee: they have amplified our social media presence, represented our voice in the UN Convention on Biological Diversity's discussions on synthetic biology, organised the EUSynBioS Social in Manchester and of course our EUSynBioS Symposium at CNB-CSIC Madrid.
The fourth year of EUSynBioS shall facilitate horizontal connections across the community, further strengthen our interface to industry, and bring about more joint events with fellow communities around the globe.

Do these challenges sound appealing to you ?
Do you have an idea which would really make a difference to the community ?
Do you have what it takes to be a leader in European synthetic biology ?

Then be a part of the 2018 EUSynBioS Steering Committee!
Applications are now open until 31. December 2017. We will be in touch with you soon thereafter, and aim to announce our 2018 Steering Committee in early January."

More information and to apply >>

Share